(x^2-x)/2=1/8

Simple and best practice solution for (x^2-x)/2=1/8 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (x^2-x)/2=1/8 equation:


x in (-oo:+oo)

(x^2-x)/2 = 1/8 // - 1/8

(x^2-x)/2-(1/8) = 0

(x^2-x)/2-1/8 = 0

(8*(x^2-x))/(2*8)+(-1*2)/(2*8) = 0

8*(x^2-x)-1*2 = 0

8*x^2-8*x-2 = 0

8*x^2-8*x-2 = 0

2*(4*x^2-4*x-1) = 0

4*x^2-4*x-1 = 0

DELTA = (-4)^2-(-1*4*4)

DELTA = 32

DELTA > 0

x = (32^(1/2)+4)/(2*4) or x = (4-32^(1/2))/(2*4)

x = (4*2^(1/2)+4)/8 or x = (4-4*2^(1/2))/8

2*(x-((4-4*2^(1/2))/8))*(x-((4*2^(1/2)+4)/8)) = 0

(2*(x-((4-4*2^(1/2))/8))*(x-((4*2^(1/2)+4)/8)))/(2*8) = 0

(2*(x-((4-4*2^(1/2))/8))*(x-((4*2^(1/2)+4)/8)))/(2*8) = 0 // * 2*8

2*(x-((4-4*2^(1/2))/8))*(x-((4*2^(1/2)+4)/8)) = 0

( 2 )

2 = 0

x belongs to the empty set

( x-((4*2^(1/2)+4)/8) )

x-((4*2^(1/2)+4)/8) = 0 // + (4*2^(1/2)+4)/8

x = (4*2^(1/2)+4)/8

( x-((4-4*2^(1/2))/8) )

x-((4-4*2^(1/2))/8) = 0 // + (4-4*2^(1/2))/8

x = (4-4*2^(1/2))/8

x in { (4*2^(1/2)+4)/8, (4-4*2^(1/2))/8 }

See similar equations:

| 2000/×=3 | | $10/$4y | | 8/7x-2/5=1/10 | | 4y=270-3x | | -16+5n=42+56n+3 | | 39+N-16=25+14-11+N+N+N-15 | | -50-4x=18-8x | | 2x-31=x-11 | | -79+5x=41-3x | | 0=x^3-7x^2+6x+24 | | -40=h-13 | | t=96-86 | | x=0/20 | | 28-32+x=6 | | 3x+4y=270 | | 3x^3+8x^2=15x+40 | | Fover-9+4=2 | | -17y+17=-3y+8-14y | | y+2x=135 | | 97=7u | | -17y+17=-3y+814y | | x=1220/0 | | -3x-7=2x-12 | | 2(40-2y)+4y=80 | | 3z-10z=-63 | | 24+3x=3x+3(-1) | | 6y+2y+10=90 | | 40x-31=8x+3 | | 2x-y+xi-3yi=3-i | | 30×2/3 | | 10x=74 | | 4x+3y=93 |

Equations solver categories